A comprehensive multidimensional-embedded, one-dimensional reaction coordinate for protein unfolding/folding.

نویسندگان

  • Rudesh D Toofanny
  • Amanda L Jonsson
  • Valerie Daggett
چکیده

The goal of the Dynameomics project is to perform, store, and analyze molecular dynamics simulations of representative proteins, of all known globular folds, in their native state and along their unfolding pathways. To analyze unfolding simulations, the location of the protein along the unfolding reaction coordinate (RXN) must be determined. Properties such as the fraction of native contacts and radius of gyration are often used; however, there is an issue regarding degeneracy with these properties, as native and nonnative species can overlap. Here, we used 15 physical properties of the protein to construct a multidimensional-embedded, one-dimensional RXN coordinate that faithfully captures the complex nature of unfolding. The unfolding RXN coordinates for 188 proteins (1534 simulations and 22.9 mus in explicit water) were calculated. Native, transition, intermediate, and denatured states were readily identified with the use of this RXN coordinate. A global native ensemble based on the native-state properties of the 188 proteins was created. This ensemble was shown to be effective for calculating RXN coordinates for folds outside the initial 188 targets. These RXN coordinates enable, high-throughput assignment of conformational states, which represents an important step in comparing protein properties across fold space as well as characterizing the unfolding of individual proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition Pathway and Its Free-Energy Profile: A Protocol for Protein Folding Simulations

We propose a protocol that provides a systematic definition of reaction coordinate and related free-energy profile as the function of temperature for the protein-folding simulation. First, using action-derived molecular dynamics (ADMD), we investigate the dynamic folding pathway model of a protein between a fixed extended conformation and a compact conformation. We choose the pathway model to b...

متن کامل

Free energy barriers in protein folding and unfolding reactions

Protein folding and unfolding reactions are slowed down by free energy barriers that arise when changes in enthalpy and entropy do not compensate for each other during the course of the reaction. The nature of these free energy barriers is poorly understood. The common assumption is that a single dominant barrier (> 3 kBT), describable in terms of a single reaction coordinate, slows down the st...

متن کامل

Folding and Unfolding

The results of this thesis concern folding of one-dimensional objects in two dimensions: planar linkages. More precisely, a planar linkage consists of a collection of rigid bars (line segments) connected at their endpoints. Foldings of such a linkage must preserve the connections at endpoints, preserve the bar lengths, and (in our context) prevent bars from crossing. The main result of this the...

متن کامل

Revealing a concealed intermediate that forms after the rate-limiting step of refolding of the SH3 domain of PI3 kinase.

Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) ...

متن کامل

Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments

Single molecule mechanical unfolding experiments are beginning to provide profiles of the complex energy landscape of biomolecules. In order to obtain reliable estimates of the energy landscape characteristics it is necessary to combine the experimental measurements (the force–extension curves, the mechanical unfolding trajectories, force or loading rate dependent unfolding rates) with sound th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 98 11  شماره 

صفحات  -

تاریخ انتشار 2010